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Charge and current density profiles of a degenerate
magnetized free-electron gas near a hard wall

M M Kettenis and L G Suttorp
Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE
Amsterdam, The Netherlands

Received 24 November 1997

Abstract. The charge and current densities of a completely degenerate free-electron gas in a
uniform magnetic field are found to have a damped oscillatory spatial dependence near a wall
that is parallel to the magnetic field. For large distances from the wall the behaviour of the
associated profile functions is analysed by means of systematic asymptotic expansions. Both
densities are shown to decay to their bulk values through a Gaussian tail, with prefactors that
depend algebraically and logarithmically on the distance from the wall.

1. Introduction

Ever since Landau’s original derivation [1] of diamagnetism in a magnetized free-electron
gas, there has been interest in boundary effects. This is not surprising, since the
diamagnetism of a finite sample is caused by currents flowing near the boundary. To
gain a deeper insight into the diamagnetic effect one needs to investigate the behaviour of
these currents in the neighbourhood of a wall parallel to the external magnetic field. Of
particular interest is the question of how the current density decays in the bulk.

For high temperatures it is adequate to use Maxwell–Boltzmann statistics. In that
approximation the precise form of the current profile in the neighbourhood of a hard wall
has been studied by Ohtaka and Moriya [2] and by Jancovici [3] within the framework of
linear response and, more recently, by John and Suttorp [4] with the use of a Green function
method. In both approaches a Gaussian decay of the current density in the bulk has been
found: the decay is proportional to exp(−x2), with x the distance from the wall in suitable
units. A similar decay has been found [4, 5] for the excess charge density and the excess
(kinetic) pressure.

For lower temperatures the effects of quantum statistics have to be taken into account.
In that regime Macriset al [6] derived an exponential bound (∼ exp(−x)) on the decay of
the current density in the bulk, at least for non-zero temperature. For the strongly degenerate
case of vanishingT , Ohtaka and Moriya [2] and Jancovici [3] obtained a closed expression
for the current density, via an inverse Laplace transform of the expression for Maxwell–
Boltzmann statistics. Remarkably enough, their results exhibit a much slower algebraic
decay proportional tox−1. Using the same method one easily derives similar expressions
for the excess charge density and the excess pressure atT = 0. However, the expression for
the excess pressure obtained along these lines shows the unphysical feature of an oscillatory
behaviour that is no longer damped in the bulk.

The various findings for the asymptotic behaviour of physical quantities near the bulk,
as described above, justify a closer inspection of the problem. In this paper we will derive
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systematic asymptotic expansions for the charge and the current density near the bulk by
starting from exact integral expressions valid atT = 0, which will be established on the
basis of a Green function formulation. The validity of these asymptotic expansions will
be assessed by a comparison with the results of a numerical evaluation of the integral
expressions.

2. Green functions; charge and current density

Consider the half-spacex > 0, with a hard wall atx = 0. Choose the magnetic field in the
z-direction, with vector potentialA = (0, Bx,0). The transverse part of the Hamiltonian
for a particle with chargee and massm in this field is given by

H⊥ = − h̄
2

2m
1⊥ + ih̄ωcx

∂

∂y
+ 1

2
mωc

2x2 (1)

whereωc = eB/mc is the cyclotron frequency associated with the particle. The Green
function for the eigenvalue equationH⊥ψn(r) = Enψn(r) (r = (x, y)) is defined by

(H⊥ − z)Gz(r, r
′) = −δ(r − r′) (2)

with z a complex energy variable and with boundary conditionGz(r, r
′) = 0 for x = 0

and/orx ′ = 0. This means we can express the Green function as

Gz(r, r
′) =

∑
n

ψn(r)ψ
∗
n (r
′)

1

z− En . (3)

The discontinuity ofGz at z = E

GE(r, r
′) = i

2π
[Gz=E+i0(r, r

′)−Gz=E−i0(r, r
′)] (4)

will be referred to as the energy Green function.
Due to the translation invariance in they-direction of both the Hamiltonian and the

boundary condition, a Fourier transform is appropriate. If we define the transform by
Gz(r, r

′) = (2π)−1
∫∞
−∞ dk exp[ik(y − y ′)]Gz(k, x, x

′), the Hamiltonian becomes

H⊥(k) = − h̄
2

2m

∂2

∂x2
+ h̄2

2m
k2− h̄ωckx + 1

2
mω2

cx
2 (5)

and the equivalent of (2) is

[H⊥(k)− z]Gz(k, x, x
′) = −δ(x − x ′). (6)

This means that we can write the Fourier transform of the energy Green function as

GE(k, x, x
′) =

∑
n

ψn(k, x)ψ
∗
n (k, x)δ(En(k)− E) (7)

where theψn(k, x) are eigenfunctions ofH⊥(k), with eigenvaluesEn(k), normalized such
that

∫∞
0 dx |ψn(k, x)|2 = 1.

The charge density for a gas of spin-1
2 fermions without mutual interaction at temperature

T = 0 and chemical potentialµ is given by

ρ(x) = e23/2m1/2

πh̄

∑
n

|ψn(r)|2(µ− En)1/2 (8)
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where the spin degeneracy has been taken into account. With the help of the Fourier
transform of the energy Green function (7) we can write this as

ρ(x) = e21/2m1/2

π2h̄

∫ µ

0
dE (µ− E)1/2

∫ ∞
−∞

dk GE(k, x, x). (9)

Likewise, the current density in they-direction is given by

jy(x) = e23/2m1/2

πh̄

∑
n

{
− ih̄

2m

[
ψ∗n (r)

∂ψn(r)

∂y
− ∂ψ

∗
n (r)

∂y
ψn(r)

]
− ωcx|ψn(r)|2

}
×(µ− En)1/2 (10)

or

jy(x) = e21/2m1/2

π2h̄

∫ µ

0
dE (µ− E)1/2

∫ ∞
−∞

dk

(
h̄

m
k − ωcx

)
GE(k, x, x). (11)

3. Explicit form of Green function; parabolic cylinder functions

We now define dimensionless quantities by expressing the positionx in units (h̄/mωc)1/2

and the wavenumberk in units (mωc/h̄)1/2. We also express all energies in units ¯hωc,
and scale the Green function accordingly. In this way, we get the following dimensionless
Hamiltonian

H⊥(k) = −1

2

∂2

∂x2
+ 1

2
(x − k)2. (12)

The corresponding eigenfunctions are the parabolic cylinder functions [7]

ψn(k, x) =
[ ∫ ∞

0
dt Dzn(k)−1/2(

√
2(t − k))

]−1/2

Dzn(k)−1/2(
√

2(x − k)) (13)

where we have applied a similar normalization as before (but now with dimensionlessx and
k). The functionzn(k), which gives the eigenvalues, is defined by the boundary condition
at x = 0

Dzn(k)−1/2(−
√

2k) = 0. (14)

The function is plotted in figure 1. It has been studied before by MacDonald and Středa [8]
and Kunz [9]. As can be seen in figure 1,zn(k) has the property that limk→∞ zn(k) = n+ 1

2

andzn(0) = 2n+ 3
2.

If we substitute (13) into (7) we get the following expression for the (dimensionless)
energy Green function

GE(k, x, x) =
∑
n

[ ∫ ∞
0

dt D2
zn(k)−1/2(

√
2(t − k))

]−1

D2
zn(k)−1/2(

√
2(x − k))δ(E − zn(k)).

(15)

Inserting this expression in the dimensionless equivalent of (9) and (11) we can carry out the
integration overE. Definingkn(µ) by zn(kn(µ)) = µ we arrive at the following expressions
for the charge density

ρ(x) = e

2π2

(
2mωc
h̄

)3/2∑
n

′
∫ ∞
kn(µ)

dk [µ− zn(k)]1/2

×
[ ∫ ∞

0
dt D2

zn(k)−1/2(
√

2(t − k))
]−1

D2
zn(k)−1/2(

√
2(x − k)) (16)
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Figure 1. The functionzn(k), for n = 0–4.

and the current density

jy(x) = − e

2π2

(
2mωc
h̄

)3/2(
h̄ωc

m

)1/2∑
n

′
∫ ∞
kn(µ)

dk [µ− zn(k)]1/2(x − k)

×
[ ∫ ∞

0
dt D2

zn(k)−1/2(
√

2(t − k))
]−1

D2
zn(k)−1/2(

√
2(x − k)). (17)

The summations are over alln < µ− 1
2, as indicated by the prime. From these expressions

it is fairly easy to see that in the bulk the charge density is given by

ρ = lim
x→∞ ρ(x) =

e

2π2

(
2mωc
h̄

)3/2∑
n

′
[µ− (n+ 1

2)]
1/2 (18)

and, because of the orthogonality ofDn(
√

2k) and kDn(
√

2k), that there is no current in
the bulk.

Alternative expressions for the charge and the current density are found by writing
Gz(k, x, x

′) as the sum of the Green function for an infinite domain and a correction due
to the boundaries. The infinite-domain Green function is given by [10]

G0
z(k, x, x

′) = − 1√
π
0
(−z+ 1

2

)
Dz−1/2(

√
2(x − k))Dz−1/2(−

√
2(x ′ − k)) (19)

for x > x ′, and an analogous expression forx < x ′. The correction for the chosen geometry
is [4]

Gc
z(k, x, x

′) = 1√
π
0(−z+ 1

2)
Dz−1/2(

√
2k)

Dz−1/2(−
√

2k)
Dz−1/2(

√
2(x − k))Dz−1/2(

√
2(x ′ − k)) (20)

for all x > 0 andx ′ > 0.
The energy Green function is determined by the poles ofG0

z +Gc
z. The contributions

from the gamma functions inG0 andGc cancel, so that only the roots of the denominator in
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(20) contribute. They give a residue proportional to [∂Dz−1/2(−
√

2k)/∂z]−1 in z = zn(k),
which results in

GE(k, x, x) = 1√
π

∑
n

0(−zn(k)+ 1
2)D

2
zn(k)−1/2(

√
2(x − k))

×Dzn(k)−1/2(
√

2k)

[
∂Dz−1/2(−

√
2k)

∂z

∣∣∣∣∣
z=zn(k)

]−1

δ(E − zn(k)). (21)

From (14) we see that

∂Dz−1/2(−
√

2k)

∂z

∣∣∣∣∣
z=zn(k)

= − ∂Dz−1/2(−
√

2k)

∂k

∣∣∣∣∣
z=zn(k)

[
dzn(k)

dk

]−1

. (22)

With the help of the WronskianW [Dν(z),Dν(−z)] =
√

2π/0(−ν) [7] we derive

GE(k, x, x) = − 1

2π

∑
n

02(−zn(k)+ 1
2)D

2
zn(k)−1/2(

√
2k)D2

zn(k)−1/2(
√

2(x − k))

×dzn(k)

dk
δ(E − zn(k)). (23)

By comparing this with (15) we find[ ∫ ∞
0

dt D2
zn(k)−1/2(

√
2(t − k))

]−1

= 1

2π
02(−zn + 1

2)D
2
zn(k)−1/2(

√
2k)

∣∣∣∣dzn(k)dk

∣∣∣∣ (24)

where we made use of the fact that dzn(k)/dk < 0.
Plugging (24) into (16) and (17) gives alternative expressions for the charge density and

the current density. Unfortunately neither these nor (16) and (17) allow us to evaluate the
integrals overk analytically. Both sets of formulae can be used for a numerical evaluation,
although the expressions based on (23) are more convenient, since they involve a single
integration only. Numerical results obtained along these lines are presented in figure 2.
Both the charge and current density decay to their bulk values within a distance of a few
times the typical lengthscale of the system(h̄/mωc)1/2. Near the boundary, the current
density exhibits a layered structure of currents flowing in alternate directions. The number
of layers increases with the number of filled Landau levels.

4. Asymptotic expansions

Expressions (16) and (17) are a suitable starting point to derive the asymptotic behaviour
of the charge density and the current density for largex. In the following we will focus
mainly on the current density. From (17) we see that for the latter we need to determine
asymptotic expansions of the integrals

In(x) =
∫ ∞
kn(µ)

dk [µ− zn(k)]1/2(x − k)

×
[ ∫ ∞

0
dt D2

zn(k)−1/2(
√

2(t − k))
]−1

D2
zn(k)−1/2(

√
2(x − k)). (25)

It will turn out that In(x) decays as exp(−x2/2), so we can discard any terms that decay
faster than that.
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Figure 2. The charge density (· · · · · ·, in unitse/2π2(2mωc/h̄)3/2) and the current density (——,
in units e/2π2(2mωc/h̄)3/2(h̄ωc/m)1/2) for µ = 2.0.

We split the integration interval atk′ = κx, with 0< κ < 1− 1
2

√
2. The contribution

to In(x) from the interval [kn(µ), k′] can be estimated. Consider the normalization factor∫ ∞
0

dt D2
ν (
√

2(t − k)) =
∫ ∞
−k

dt D2
ν (
√

2t) >
∫ ∞
−kn(µ)

dt D2
ν (
√

2t) ≡ cn(ν) (26)

with ν = zn(k) − 1
2, which implies thatν ∈ [n,µ − 1

2]. Since cn(ν) is finite in the
closed interval [n,µ − 1

2], we conclude thatcn(ν) is bounded from below by a certaincn
independent ofk. Now we use the following asymptotic series [7]

Dν(z) ' e−z
2/4zνAν(z/

√
2) (27)

which is valid for large and positivez. Here we introduced

Aν(z) =
∞∑
m=0

(−ν/2)m((1− ν)/2)m
m!

(−z2)−m (28)

where (a)n is Pochhammer’s symbola(a + 1) . . . (a + n − 1). Note thatAn(z) with n

integer has a finite number of terms only; it is related to the Hermite polynomials by
Hn(z) = (2z)nAn(z). From zn(k) 6 µ we conclude that

D2
zn(k)−1/2(

√
2(x − k)) 6 2µ−1/2e−(x−k)

2
(x − k)2µ−1[1+O((x − k)−2)] (29)

for large positivex− k. This means that the contribution of the interval [kn(µ), k
′] to In(x)

is smaller than

2µ−1/2µ1/2

cn

∫ k′

kn(µ)

dk e−(x−k)
2
(x − k)2µ[1+O((x − k)−2)]. (30)

Since we have chosenk′ < (1− 1
2

√
2)x, this decays faster than exp(−x2/2), so it can be

discarded.
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For k > k′ we can use the asymptotic expansions ofzn(k)

[zn(k)− (n+ 1
2)] '

1√
πn!

2ne−k
2
k2n+1An(k)

Bn(k)
(31)

(see appendix A) and of the normalization factor[ ∫ ∞
0

dt D2
zn(k)−1/2(

√
2(t − k))

]−1

' 1√
πn!
− 1

π(n!)2
2n+1e−k

2
k2n+1Cn(k) (32)

(see appendix B), both of which are valid for largek. Since [zn(k)− (n+ 1
2)] is small, we

can write

D2
zn(k)−1/2(

√
2(x − k)) = D2

n(
√

2(x − k))

+ ∂

∂ν
D2
ν (
√

2(x − k))
∣∣∣∣
ν=n

[zn(k)− (n+ 1
2)] + h.o.t. (33)

With the help of these expressions we find

In(x) '
∫ ∞
k′

dk [µ− (n+ 1
2)]

1/2 1√
πn!

(x − k)D2
n(
√

2(x − k))

−
∫ ∞
k′

dk
1

2
[µ− (n+ 1

2)]
−1/2 1

π(n!)2
2ne−k

2
k2n+1

×An(k)
Bn(k)

(x − k)D2
n(
√

2(x − k))−
∫ ∞
k′

dk [µ− (n+ 1
2)]

1/2

× 1

π(n!)2
2n+1e−k

2
k2n+1Cn(k)(x − k)D2

n(
√

2(x − k))

+
∫ ∞
k′

dk [µ− (n+ 1
2)]

1/2 1

π(n!)2
2ne−k

2
k2n+1

×An(k)
Bn(k)

(x − k) ∂
∂ν
D2
ν (
√

2(x − k))
∣∣∣∣
ν=n
+ h.o.t. (34)

The first term can be discarded. This can be seen by writingDn in terms of the Hermite
polynomialHn [7]

Dn(z) = 2−n/2e−z
2/4Hn(z/

√
2). (35)

As H 2
n (z) is even inz, we have∫ ∞

k′
dk (x − k)D2

n(
√

2(x − k)) = 2−n
∫ ∞

2x−k′
dk e−(x−k)

2
(x − k)H 2

n (x − k). (36)

Sincek′ is less than(1− 1
2

√
2)x, this decays faster than exp(−x2/2).

In the remaining terms of (34) we split the integration interval once more, now at
k′′ = λx, with λ > 1

2

√
2. The contribution fromk > k′′ in the second and the third term is

negligible. This can be shown in the same way as we did for the first term. For the fourth
term we use the following integral representation of the parabolic cylinder function [7]

Dν(z) =
√

2

π
ez

2/4
∫ ∞

0
dt e−t

2/2 cos(νπ/2− zt)tν (37)

to show that
∂

∂ν
D2
ν (
√

2(x − k))
∣∣∣∣
ν=n
= 2−n/2+3/2

√
π

Hn(x − k)
∫ ∞

0
dt e−t

2/2tn

×
{

cos[nπ/2−
√

2(x − k)t ] ln t − π
2

sin[nπ/2−
√

2(x − k)t ]
}
. (38)
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The absolute value of the part between curly brackets is smaller than| ln t | + π/2, which
implies that∣∣∣∣ ∫ ∞

0
dt e−t

2/2tn{cos[nπ/2−
√

2(x − k)t ] ln t − π
2

sin[nπ/2−
√

2(x − k)t ]}
∣∣∣∣ 6 c′n (39)

wherec′n is independent ofk andx. As a consequence we find that∣∣∣∣ ∫ ∞
k′′

dk e−k
2
k2n+1An(k)

Bn(k)
(x − k) ∂

∂ν
D2
ν (
√

2(x − k))
∣∣∣∣
ν=n

∣∣∣∣
6 c′′n

∫ ∞
k′′

dk e−k
2
k2n+1|(x − k)Hn(x − k)| (40)

where c′′n is independent ofk and x as well. The right-hand side decays faster than
exp(−x2/2) since we have takenk′′ > 1

2

√
2x.

We now collect all remaining terms, evaluating the quotientAn(k)/Bn(k) as a single
series, writingDn in terms of Hermite polynomials, and using

∂

∂ν
Dν(z)

∣∣∣∣
ν=n
' e−z

2/4zn
[
An(z/

√
2) ln z+ ∂

∂ν
Aν(z/

√
2)

∣∣∣∣
ν=n

]
. (41)

This asymptotic relation is valid for large and positivez and follows by differentiating (27)
with respect toν. The result forIn(x) as defined in (25) is

In(x) ' 22n+1

π(n!)2
[µ− (n+ 1

2)]
1/2
∫ k′′

k′
dk e−k

2
e−(x−k)

2
k2n+1(x − k)2n+1Pn(k, x − k) (42)

with

Pn(k, x − k) = −
{

1

4[µ− (n+ 1/2)]
+

n∑
m=1

1

m
− γ − ln(2k(x − k))

}
Kn(k, x − k)

+Ln(k, x − k) (43)

containing the asymptotic series

Kn(k, x − k) = 1− 1+ n+ n2

2
k−2+ n− n

2

2
(x − k)−2− 4+ 9n− n4

8
k−4

−n− n
4

4
k−2(x − k)−2− 3n− 6n2+ 4n3− n4

8
(x − k)−4+ · · · (44)

Ln(k, x − k) = −1+ 2n

4
k−2+ 1− 2n

4
(x − k)−2− 9− 4n3

16
k−4

−1− 4n3

8
k−2(x − k)−2− 3− 12n+ 12n2− 4n3

16
(x − k)−4+ · · · . (45)

Integration overk gives us the following asymptotic expansion forIn(x)

In(x) ' 2−2n−3/2

√
π(n!)2

[µ− (n+ 1
2)]

1/2e−x
2/2x4n+2Rn(x). (46)

Here we defined

Rn(x) = −
{

1

4[µ− (n+ 1/2)]
+

n∑
m=1

1

m
− γ − ln(x2/2)

}
Mn(x)+Nn(x) (47)

with the asymptotic series

Mn(x) = 1− (3+ 2n+ 4n2)x−2− (12+ 21n− 10n2− 8n4)x−4+ · · · (48)

Nn(x) = −(1+ 4n)x−2− 21− 20n− 32n3

2
x−4+ · · · . (49)
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This result is independent of the particular choice ofk′ andk′′ as it should be.
Finally, substitution of (46) into (17) yields the asymptotic expansion for the current

density that we set out to establish. It has the form

jy(x) ' −e mω
2
c

2π5/2h̄

∑
n

′ 2−2n

(n!)2
[µ− (n+ 1

2)]
1/2e−x

2/2x4n+2Rn(x) (50)

with the asymptotic seriesRn(x) as given in (47).
The asymptotic behaviour of the charge density can be determined in a similar fashion.

One finds

ρ(x)− ρ ' em
3/2ωc

3/2

π5/2h̄3/2

∑
n

′ 2−2n

(n!)2
[µ− (n+ 1

2)]
1/2e−x

2/2x4n+1R′n(x) (51)

where we introduced the abbreviation

R′n(x) = −
{

1

4[µ− (n+ 1
2)]
+

n∑
m=1

1

m
− γ − ln(x2/2)

}
M ′n(x)+N ′n(x) (52)

with the asymptotic series

M ′n(x) = 1− (2+ 2n+ 4n2)x−2− (10+ 19n− 6n2− 8n4)x−4+ · · · (53)

N ′n(x) = −(1+ 4n)x−2− 19− 12n− 32n3

2
x−4+ · · · (54)

5. Discussion

To check the validity of our asymptotic expansions we compared them with numerical
results for the charge and the current density. In figure 3 we plottedI0(x) for µ = 1.0.
For this value ofµ there is only one (partially) filled Landau level, soI0(x) represents
the complete current density. Because of its fast decay the prefactor exp(−x2/2)x4n+2 has
been divided out. The full curve corresponds to the numerical results, the dotted line to the
asymptotic expansion (46). As can be seen, the convergence is quite good.

As (50) and (51) show, the contribution of each Landau leveln to both the current density
and the charge density has a Gaussian decay for largex (in leading order proportional to
exp(−x2/2)x4n+2 ln(x2/2) and exp(−x2/2)x4n+1 ln(x2/2), respectively). Therefore, when
only a limited number of Landau levels is filled, in other words for every finite magnetic
field, both densities decay with a tail proportional to a Gaussian. This property has been
established before in a preliminary report by one of us [11]. The purely algebraic prefactors
(without a logarithmic dependence) reported there, were inferred from numerical evidence
only and are not corroborated by the asymptotic series presented above.

The decay found here is consistent with the bound derived by Macriset al [6]. However,
it disagrees with the results of Ohtaka and Moriya [2] and of Jancovici [3]. In the latter
paper the current density atT = 0 is given as

jy(x) = emµω
2
c

16π2h̄

{
8µx2

[π
2
− Si(23/2µ1/2x)

]
+
(

3

4µx2
− 1

)
sin(23/2µ1/2x)

−
(

3

21/2µ1/2x
+ 23/2µ1/2x

)
cos(23/2µ1/2x)

}
(55)

with Si(z) the sine integral. The right-hand side decays algebraically, with a tail proportional
to x−1 for large x. It is obtained via an inverse Laplace transform of the current density



6556 M M Kettenis and L G Suttorp

Figure 3. Comparison between numerical results (——) and the asymptotic expansion (· · · · · ·)
of the current density forµ = 1.0. The plotted function isf (x) = exp(x2/2)x−2I0(x), with
I0(x) as defined in (25).

jMB
y (β, x) for a magnetized free-electron gas with Maxwell–Boltzmann statistics [12]:

jy(x) = 1

π i

∫ i∞

−i∞

dβ

β

Z

N
jMB
y (β, x)eβµ (56)

whereZ is the one-particle partition function for Maxwell–Boltzmann statistics andN is
the number of particles. The Maxwell–Boltzmann form of the current density employed
in [3] is obtained by a linear-response method valid for small magnetic field. In fact, the
dimensionless parameter that has to be small isβh̄ωc. The integration in (56) is taken over
all values ofβ, and thus in particular over all values ofβh̄ωc. Hence, it is not justifieda
priori to insert the linear-response expression forjMB

y (β, x) and to carry out the integration
subsequently. As a consequence, expression (55), and the ensuing algebraic decay is not
guaranteed to be correct. As has been already remarked in the introduction, the procedure
of taking inverse Laplace transforms of Maxwell–Boltzmann expressions for small fields
may even lead to weird effects like undamped oscillations, if it is applied to other physical
quantities. Questions about the validity of (55) in the limitx →∞ have been raised before
by Shishido [13], who argues that the expression is not uniformly convergent, and is valid
only for smallx (and smallB).

It should be noted here that our asymptotic expansions (50) and (51) are rather awkward
when it comes to studying the limitB → 0. In that limit the number of filled Landau levels
goes to infinity. The coefficients in the expansion rapidly grow with the labeln of the
Landau level, as is clear from (48), (49), (53) and (54). Hence, the asymptotic region
moves further and further away from the wall, asB goes to 0.

Our approach to determine the asymptotic behaviour of profiles for finite magnetic fields
can easily be generalized to other physical quantities, for instance the kinetic pressure. In
general, the leading term is proportional to exp(−x2/2)xm ln(x2/2), wherem increases with
the number of filled Landau levels and with the number of particle momenta occurring as
factors in the expression for the physical quantity being calculated.
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Appendix A. Asymptotics of zn(k)

In section 3 we introduced the functionzn(k), which defines the eigenvalues of the Fourier-
transformed Hamiltonian (12). It is defined by

Dzn(k)−1/2(−
√

2k) = 0. (A1)

The asymptotic expansion ofDν(−
√

2k) for large and positivek is given by [7]

Dν(−
√

2k) ' eiπνe−k
2/2(
√

2k)νAν(k)+
√

2π

0(−ν)ek
2/2(
√

2k)−ν−1Bν(k) (A2)

with Aν as defined in (28) and withBν given by

Bν(k) =
∞∑
m=0

((1+ ν)/2)m((2+ ν)/2)m
m!

(k2)−m. (A3)

Setting (A2) to zero and expanding aroundν = n we arrive at

[zn(k)− (n+ 1
2)] '

1√
πn!

2ne−k
2
k2n+1An(k)

Bn(k)
(A4)

for large positivek. This is a generalization of the expression given by Kunz [9].

Appendix B. Asymptotics of the normalization factor

In section 4 we needed the asymptotic expansion of the normalization factor
[
∫∞

0 dt D2
zn(k)−1/2(

√
2(t − k))]−1 for large k. In appendix A we have seen that for large

k the function [zn(k)− (n+ 1
2)] is small. Therefore we can write∫ ∞

0
dt D2

zn(k)−1/2(
√

2(t − k)) =
∫ ∞

0
dt D2

n(
√

2(t − k))

+ ∂

∂ν

∫ ∞
0

dt D2
ν (
√

2(t − k))
∣∣∣∣
ν=n

[zn(k)− (n+ 1
2)]

+ ∂2

∂ν2

∫ ∞
0

dt D2
ν (
√

2(t − k))
∣∣∣∣
ν=n

1
2[zn(k)− (n+ 1

2)]
2+ h.o.t. (B1)

The first term in this expansion is given by∫ ∞
0

dt D2
n(
√

2(t − k)) =
∫ ∞
−∞

dt D2
n(
√

2t)−
∫ −k
−∞

dt D2
n(
√

2t)

' √πn! − 2n−1e−k
2
k2n+1

(
k−2− 1− 3n+ n2

2
k−4+ · · ·

)
(B2)

as can be derived by expressingDn in terms of the Hermite polynomialHn, followed by
term by term integration of the resulting series.



6558 M M Kettenis and L G Suttorp

With the help of the integral representation (37) ofDν the coefficient of the second term
in (B1) becomes

∂

∂ν

∫ ∞
0

dt D2
ν (
√

2(t − k))
∣∣∣∣
ν=n
= 2
√

2√
π

∫ ∞
−k

ds es
2/2Dn(

√
2s)

×
∫ ∞

0
dt e−t

2/2tn
[
cos(nπ/2−

√
2st) ln t − π

2
sin(nπ/2−

√
2st)

]
. (B3)

Repeated partial integration yields

∂

∂ν

∫ ∞
0

dt D2
ν (
√

2(t − k))
∣∣∣∣
ν=n
= 1√

π

n∑
m=0

(−1)m2−n/2+m/2+1 n!

(n−m)!Hn−m(s)

×
∫ ∞

0
dt e−t

2/2tn−m−1
{

cos[(n+m+ 1)π/2−
√

2st ] ln t

− π

2
sin[(n+m+ 1)π/2−

√
2st ]

} ∣∣∣∣∞
s=−k

. (B4)

For allm < n we write the contribution ats = −k of the sine term as

−π
2

Im

[
in+m+1

∫ ∞
0

dt e−t
2/2tn−m−1ei

√
2kt

]
. (B5)

We now use a theorem [14] stating that for largex the Fourier integral∫ β

α

dt φ(t)eixt (B6)

has an asymptotic expansion to which the endpointα contributes as

A =
∞∑
n=0

in+1 dnφ(α)

dαn
x−n−1eixα (B7)

if φ(t) has no singularity in [α, β]. With the help of this theorem we can show that

−π
2

∫ ∞
0

dt e−t
2/2tn−m−1 sin[(n+m+ 1)π/2+

√
2kt ]

' − π
2
(−1)n(

√
2k)−n+m

∞∑
l=0

(2l + n−m− 1)!

22l l!
k−2l . (B8)

The contribution of the cosine term ats = −k in (B4) can be written as

Re

[
in+m+1

∫ ∞
0

dt e−t
2/2tn−m−1ei

√
2kt ln t

]
. (B9)

Because of the logarithm we need a generalization of the previous theorem to Fourier
integrals with logarithmic singularities. This generalization can also be found in [14]. It
states that forφ(t) = φ1(t) ln(t−α) the asymptotic expansion of (B6) contains a contribution
from the lower endpoint which reads

A =
∞∑
n=0

in+1 dnφ1(α)

dαn

[
ψ(n+ 1)− ln x + i

π

2

]
x−n−1eixα (B10)

with ψ(z) the logarithmic derivative of the gamma function. With the help of this theorem
we see that the contribution froms = −k of the cosine term is identical to the contribution
of the sine term. Using the same method, we find that fors → ∞ the two terms in (B4)
cancel, at least form < n.
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The contributions form = n can be calculated in a similar fashion, although they need
some extra attention because of the additionalt−1 singularity. They add up to∫ ∞

0
dt e−t

2/2t−1{cos[(2n+ 1)π/2−
√

2st ] ln t − π
2

sin[(2n+ 1)π/2−
√

2st ]}
∣∣∣∣∞
s=−k

' π(−1)n
[
− γ − ln(

√
2k)+

∞∑
l=1

(2l − 1)!

22l l!
k−2l

]
(B11)

whereγ is Euler’s constant. Collecting all these terms we obtain

∂

∂ν

∫ ∞
0

dt D2
ν (
√

2(t − k))
∣∣∣∣
ν=n
' 2
√
πn!

[ n∑
m=1

1

m
− γ − ln(

√
2k)

+1+ 2n

4
k−2+ 3+ 6n+ 6n2

16
k−4+ · · ·

]
. (B12)

Finally, we have for the third term in (B1)

1

2

∂2

∂ν2

∫ ∞
0

dt D2
ν (
√

2(t − k))
∣∣∣∣
ν=n
=
∫ ∞

0
dt Dν(

√
2(t − k)) ∂

2

∂ν2
Dν(
√

2(t − k))
∣∣∣∣
ν=n

+
∫ ∞

0
dt

[
∂

∂ν
Dν(
√

2(t − k))
]2

ν=n
. (B13)

An asymptotic expansion of the first integral can be derived along the same route as
above. The only new ingredient is a straightforward extension of the theorem by Erdélyi to
Fourier integrals with squared logarithmic singularities. It states that if in (B6) one takes
φ(t) = φ2(t) ln2(t − α), the contribution of the lower boundary is given by the asymptotic
expansion

A =
∞∑
n=0

in+1 dnφ2(α)

dαn

{
[ψ(n+ 1)− ln x]2+ ζ(2, n)+ iπ [ψ(n+ 1)− ln x] − π

2

4

}
×x−n−1eixα (B14)

with ζ(k, n) the generalized zeta function. As a consequence the asymptotics of the first
integral in (B13) is found to be of order ln2(

√
2k). This implies that for largek the first

integral is negligible with respect to the second, as we shall see.
The asymptotic behaviour of the second integral in (B13) follows by noting that for

large k the dominant contribution comes from the lower end of the integration interval.
With the help of (37), (B7) and (B10) we can derive the following asymptotic expansion
for the integrand

∂

∂ν
Dν(z)

∣∣∣∣
ν=n
'
√

2πn!ez
2/4z−n−1Bn(z/

√
2) (B15)

for large and negativez. Term-by-term integration leads to

1

2

∂2

∂ν2

∫ ∞
0

dt D2
ν (
√

2(t − k))
∣∣∣∣
ν=n

' π(n!)22−n−1ek
2
k−2n−1

(
k−2+ 5+ 5n+ n2

2
k−4+ · · ·

)
. (B16)

The right-hand side grows exponentially ask →∞, but this is compensated by the factor
exp(−2k2) in [zn(k) − (n + 1

2)]
2, resulting in an overall exp(−k2) behaviour. That is the

reason why we had to expand (B1) up to second order in [zn(k)− (n+ 1
2)]. Higher-order
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derivatives of
∫∞

0 dt D2
ν (
√

2(t−k)) are also of order exp(k2) or less, so that we do not have
to go beyond second order.

Substitution of (A4), (B2), (B12) and (B16) in (B1) gives[ ∫ ∞
0

dt D2
zn(k)−1/2(

√
2(t − k))

]−1

' 1√
πn!
− 1

π(n!)2
2n+1e−k

2
k2n+1Cn(k) (B17)

with the asymptotic series

Cn(k) =
[ n∑
m=1

1

m
− γ − ln(

√
2k)

](
1− 1+ n+ n2

2
k−2− 4+ 9n− n4

8
k−4+ · · ·

)
+
(

1+ 2n

4
k−2+ 9− 4n3

16
k−4+ · · ·

)
. (B18)
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